Raghavan Rangarajan, Anjishnu Sarkar
Flat directions in generic supersymmetric theories can change the thermal history of the Universe. A novel scenario was proposed earlier where the vacuum expectation value of the flat directions induces large masses for all the gauge bosons and gauginos. This delays the thermalization of the Universe after inflation and solves the gravitino problem. In this article we perform a detailed calculation of the above scenario. We include the appropriate initial state particle distribution functions, consider the conditions for the feasibility of the non-thermal scenario, and investigate phase space suppression of gravitino production in the context of heavy gauge bosons and gauginos in the final state. We find that the total gravitino abundance generated is consistent with cosmological constraints.
View original:
http://arxiv.org/abs/1205.5408
No comments:
Post a Comment