Friday, July 19, 2013

1307.4964 (Sophia S. Chabysheva et al.)

Symmetric multivariate polynomials as a basis for three-boson
light-front wave functions

Sophia S. Chabysheva, Blair Elliott, John R. Hiller
We develop a polynomial basis to be used in numerical calculations of light-front Fock-space wave functions. Such wave functions typically depend on longitudinal momentum fractions that sum to unity. For three particles, this constraint limits the two remaining independent momentum fractions to a triangle, for which the three momentum fractions act as barycentric coordinates. For three identical bosons, the wave function must be symmetric with respect to all three momentum fractions. Therefore, as a basis, we construct polynomials in two variables on a triangle that are symmetric with respect to the interchange of any two barycentric coordinates. We find that, through the fifth order, the polynomial is unique at each order, and, in general, these polynomials can be constructed from products of powers of the second and third-order polynomials. The use of such a basis is illustrated in a calculation of a light-front wave function in two-dimensional phi^4 theory; the polynomial basis performs much better than the plane-wave basis used in discrete light-cone quantization.
View original:

No comments:

Post a Comment