Monday, July 15, 2013

1307.3518 (Christian Weinheimer et al.)

Neutrino Masses    [PDF]

Christian Weinheimer, Kai Zuber
The various experiments on neutrino oscillation evidenced that neutrinos have indeed non-zero masses but cannot tell us the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double $\beta$-decay and the direct neutrino mass search by investigating single $\beta$-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments with different techniques are being constructed, commissioned or are even running, which aim for a sensitivity on the neutrino mass of {\cal O}(100) meV. The principle methods and these experiments will be discussed in this short review.
View original:

No comments:

Post a Comment