E. Krylov, A. Levin, V. Rubakov
We consider a mechanism of dark matter production in the course of first order phase transition. We assume that there is an asymmetry between X- and anti-X-particles of dark sector. In particular, it may be related to the baryon asymmetry. We also assume that the phase transition is so strongly first order, that X-particles do not permeate into the new phase. In this case, as the bubbles of old phase collapse, X-particles are packed into Q-balls with huge mass defect. These Q-balls compose the present dark matter. We find that the required present dark matter density is obtained for the energy scale of the theory in the ballpark of 1-10 TeV. As an example we consider a theory with effective potential of one-loop motivated form.
View original:
http://arxiv.org/abs/1301.0354
No comments:
Post a Comment