Tuesday, February 21, 2012

1202.4038 (Howard Baer et al.)

Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar    [PDF]

Howard Baer, Vernon Barger, Azar Mustafayev
The minimal supergravity (mSUGRA or CMSSM) model is an oft-used framework for
exhibiting the properties of neutralino (WIMP) cold dark matter (CDM). However,
the recent evidence from Atlas and CMS on a light Higgs scalar with mass
m_h\simeq 125 GeV highly constrains the superparticle mass spectrum, which in
turn constrains the neutralino annihilation mechanisms in the early universe.
We find that stau and stop co-annihilation mechanisms -- already highly
stressed by the latest Atlas/CMS results on SUSY searches -- are nearly
eliminated if indeed the light Higgs scalar has mass m_h\simeq 125 GeV.
Furthermore, neutralino annihilation via the A-resonance is essentially ruled
out in mSUGRA so that it is exceedingly difficult to generate
thermally-produced neutralino-only dark matter at the measured abundance. The
remaining possibility lies in the focus-point region which now moves out to
m_0\sim 10-20 TeV range due to the required large trilinear soft SUSY breaking
term A_0. The remaining HB/FP region is more fine-tuned than before owing to
the typically large top squark masses. We present updated direct and indirect
detection rates for neutralino dark matter, and show that ton scale noble
liquid detectors will either discover mixed higgsino CDM or essentially rule
out thermally-produced neutralino-only CDM in the mSUGRA model.
View original: http://arxiv.org/abs/1202.4038

No comments:

Post a Comment