Monday, June 24, 2013

1306.5210 (André Martin et al.)

Froissart Bound on Total Cross-section without Unknown Constants    [PDF]

André Martin, S. M. Roy
We determine the scale of the logarithm in the Froissart bound on total cross-sections using absolute bounds on the D-wave below threshold for $\pi\pi$ scattering. E.g. for $\pi^0 \pi^0$ scattering we show that for c.m. energy $\sqrt{s}\rightarrow \infty $, $\bar{\sigma}_{tot}(s,\infty)\equiv s\int_{s} ^{\infty} ds'\sigma_{tot}(s')/s'^2 \leq \pi (m_{\pi})^{-2} [\ln (s/s_0)+(1/2)\ln \ln (s/s_0) +1]^2$ where $m_\pi^2/s_0= 17\pi \sqrt{\pi/2} $ .
View original: http://arxiv.org/abs/1306.5210

No comments:

Post a Comment