Dao Thi Nhung, Margarete Muhlleitner, Juraj Streicher, Kathrin Walz
After the discovery of a Higgs-like boson by the LHC experiments ATLAS and CMS, it is of crucial importance to determine its properties in order to not only identify it as the boson responsible for electroweak symmetry breaking but also to clarify the question if it is a Standard Model (SM) Higgs boson or the Higgs particle of some extension beyond the SM as {\it e.g.} supersymmetry. In this context, the precise prediction of the Higgs parameters as masses and couplings play a crucial role for the proper distinction between different models. In extension of previous works on the loop-corrected Higgs boson masses of the Next-to-Minimal Supersymmetric Extension of the SM (NMSSM), we present here the calculation of the loop-corrected trilinear NMSSM Higgs self-couplings. The loop corrections turn out to have a substantial impact on the decay widths of Higgs-to-Higgs decays and on the production cross section of Higgs pairs via gluon fusion. They are therefore indispensable for the correct interpretation of the experimental Higgs results.
View original:
http://arxiv.org/abs/1306.3926
No comments:
Post a Comment