1305.4926 (Ambresh Shivaji)
Ambresh Shivaji
In this thesis, we have studied certain gluon fusion processes which proceed via quark loop diagrams at the leading order. The fact that these gluon-gluon channel processes are independent processes, their contributions towards the total/differential hadronic cross sections can be calculated separately. We have considered the production of a pair of electroweak vector bosons in association with a jet via gluon fusion within the standard model. These processes were not accessible at earlier hadron colliders such as the Tevatron. Therefore, observation of these rare processes at the LHC will be a test of the standard model itself. Like the di-vector boson production via gluon fusion processes, these processes are also important backgrounds for many new physics signals, and the standard model Higgs boson signal at the LHC. These leading order gluon fusion processes contribute to the corresponding hadronic processes at the next-to-next-to-leading order in {\alpha}_s. We have taken a model of extra-dimensions, the ADD (Arkani-Hamed, Dimopoulos and Dvali) model, as the possible candidate of new physics at the LHC. This model tries to solve the hierarchy problem of the standard model by proposing large extra space dimensions which may be accessible at TeV scale. We have considered the direct production of KK-gravitons (GKK) in association with an electroweak boson (H/{\gamma}/Z) via gluon fusion. These processes contribute to the corresponding hadronic processes at the next-to-leading order in {\alpha}_s. Many interesting issues related to the fermion loop amplitudes have also been discussed.
View original:
http://arxiv.org/abs/1305.4926
No comments:
Post a Comment