Friday, May 3, 2013

1305.0007 (Andrew J. Larkoski et al.)

Energy Correlation Functions for Jet Substructure    [PDF]

Andrew J. Larkoski, Gavin P. Salam, Jesse Thaler
We show how generalized energy correlation functions can be used as a powerful probe of jet substructure. These correlation functions are based on the energies and pair-wise angles of particles within a jet, with (N+1)-point correlators sensitive to N-prong substructure. Unlike many previous jet substructure methods, these correlation functions do not require the explicit identification of subjet regions. In addition, the correlation functions are better probes of certain soft and collinear features that are masked by other methods. We present three Monte Carlo case studies to illustrate the utility of these observables: 2-point correlators for quark/gluon discrimination, 3-point correlators for boosted W/Z/Higgs boson identification, and 4-point correlators for boosted top quark identification. For quark/gluon discrimination, the 2-point correlator is particularly powerful, as can be understood via a next-to-leading logarithmic calculation. For boosted 2-prong resonances the benefit depends on the mass of the resonance.
View original: http://arxiv.org/abs/1305.0007

No comments:

Post a Comment