Tuesday, April 23, 2013

1304.5526 (Sujeet Akula et al.)

Gluino-driven Radiative Breaking, Higgs Boson Mass, Muon $\mathbf{g-2}$,
and the Higgs Diphoton Decay in SUGRA Unification
   [PDF]

Sujeet Akula, Pran Nath
We attempt to reconcile seemingly conflicting experimental results on the Higgs boson mass, the anomalous magnetic moment of the muon, null results in search for supersymmetry at the LHC within the 8\TeV data and results from $B$-physics, all within the context of supersymmetric grand unified theories. Specifically, we consider a supergravity grand unification model with non-universal gaugino masses where we take the $\mathrm{SU}(3)_C$ gaugino field to be much heavier than the other gaugino and sfermion fields at the unification scale. This construction naturally leads to a large mass splitting between the slepton and squark masses, due to the mass splitting between the electroweak gauginos and the gluino. The heavy Higgs bosons and Higgsinos also follow the gluino toward large masses. We carry out a Bayesian Monte Carlo analysis of the parametric space and find that it can simultaneously explain the large Higgs mass, and the anomalous magnetic moment of the muon, while producing a negligible correction to the Standard Model prediction for $\mathcal{B}r(B^0_s\to\mu^+\mu^-)$. We also find that the model leads to an excess in the Higgs diphoton decay rate. A brief discussion of the possibility of detection of the light particles is given. Also discussed are the implications of the model for dark matter.
View original: http://arxiv.org/abs/1304.5526

No comments:

Post a Comment