Wednesday, November 7, 2012

1211.1369 (Ionel Lazanu et al.)

Analysis of defect formation in semiconductor cryogenic bolometric
detectors created by heavy dark matter
   [PDF]

Ionel Lazanu, Magdalena Lidia Ciurea, Sorina Lazanu
The cryogenic detectors in the form of bolometers are presently used for different applications, in particular for very rare or hypothetical events associated with new forms of matter, specifically related to the existence of Dark Matter. In the detection of particles with a semiconductor as target and detector, usually two signals are measured: ionization and heat. The amplification of the thermal signal is obtained with the prescriptions from Luke-Neganov effect. The energy deposited in the semiconductor lattice as stable defects in the form of Frenkel pairs at cryogenic temperatures, following the interaction of a dark matter particle, is evaluated and consequences for measured quantities are discussed. This contribution is included in the energy balance of the Luke effect. Applying the present model to germanium and silicon, we found that for the same incident weakly interacting massive particle the energy deposited in defects in germanium is about twice the value for silicon.
View original: http://arxiv.org/abs/1211.1369

No comments:

Post a Comment