Tuesday, July 17, 2012

1207.3730 (C. Pallis et al.)

Leptogenesis and Neutrino Masses in an Inflationary SUSY Pati-Salam
Model
   [PDF]

C. Pallis, N. Toumbas
We implement the mechanism of non-thermal leptogenesis in the framework of an inflationary model based on a supersymmetric (SUSY) Pati-Salam Grand Unified Theory (GUT). In particular, we show that inflation is driven by a quartic potential associated with the Higgs fields involved in the spontaneous GUT symmetry breaking, in the presence of a non-minimal coupling of the inflaton field to gravity. The inflationary model relies on renormalizable superpotential terms and does not lead to overproduction of magnetic monopoles. It is largely independent of one-loop radiative corrections, and it can be consistent with current observational data on the inflationary observables, with the GUT symmetry breaking scale assuming its SUSY value. Non-thermal leptogenesis is realized by the out-of-equilibrium decay of the two lightest right-handed (RH) neutrinos, which are produced by the inflaton decay. Confronting our scenario with the current observational data on light neutrinos, the GUT prediction for the heaviest Dirac neutrino mass, the baryon asymmetry of the universe and the gravitino limit on the reheating temperature, we constrain the masses of the RH neutrinos in the range (10^10-10^15) GeV and the Dirac neutrino masses of the two first generations to values between 0.1 and 20 GeV.
View original: http://arxiv.org/abs/1207.3730

No comments:

Post a Comment