Thursday, July 5, 2012

1207.0234 (Clifford Cheung et al.)

Higgs Mass from D-Terms: a Litmus Test    [PDF]

Clifford Cheung, Hannes L. Roberts
We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended $U(1)_X$ gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, $g_X$, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under $U(1)_X$. This induces an irreducible rate, $\sigma$BR, for $pp \rightarrow X \rightarrow \ell\ell$ relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, ($\sigma$BR, $m_X$), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated $X$ boson can only be observed within this window, providing a model independent `litmus test' for this broad class of scenarios at the LHC. Comparing limits, we find that current LHC results only exclude regions in parameter space which were already disfavored by precision electroweak data.
View original: http://arxiv.org/abs/1207.0234

No comments:

Post a Comment