Guy F. de Teramond, Stanley J. Brodsky
The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. In particular, the elastic and transition form factors of the pion and the nucleons are well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD. More generally, we show that the valence Fock-state wavefunctions of the eigensolutions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schr\"odinger equation, with an effective confining potential which systematically incorporates the effects of higher quark and gluon Fock states. The proposed method to compute the effective interaction thus resembles the two-particle-irreducible functional techniques used in quantum field theory.
View original:
http://arxiv.org/abs/1206.4365
No comments:
Post a Comment