Friday, June 1, 2012

1205.6811 (Matthew R. Buckley et al.)

Implications of a 130 GeV Gamma-Ray Line for Dark Matter    [PDF]

Matthew R. Buckley, Dan Hooper
Recent reports of a gamma-ray line feature at ~130 GeV in data from the Fermi Gamma-Ray Space Telescope have generated a great deal of interest in models in which dark matter particles annihilate with a sizable cross section to final states including photons. In this article, we take a model-independent approach, and discuss a number of possibilities for dark matter candidates which could potentially generate such a feature. While we identify several scenarios which could lead to such a gamma-ray line, these models are each fairly constrained. In particular, viable models require large couplings (g>1-3), and additional charged particles with masses in the range of approximately ~130-200 GeV. Furthermore, lower energy gamma-ray constraints from the Galactic Center force us to consider scenarios in which the dark matter annihilates in the early universe through velocity-suppressed processes, or to final states which yield relatively few gamma-rays (such as electrons, muons or neutrinos). An exception to these conclusions can be found in models in which the dark matter annihilates to heavy intermediate states which decay to photons to generate a line-like gamma-ray spectrum.
View original: http://arxiv.org/abs/1205.6811

No comments:

Post a Comment