Juan Barranco, Roberto Cota, David Delepine, Shaaban Khalil
We argue that \Delta L=2 neutrino spin flavor precession, induced by the primordial magnetic fields, could have a significant impact on the leptogenesis process that accounts for the baryon asymmetry of the universe. Although the extra galactic magnetic fields is extremely weak at present time (about 10^{-9} Gauss), the primordial magnetic filed at the electroweak scale could be quite strong (of order 10^{17} Gauss). Therefore, at this scale, the effects of the spin flavor precession are not negligible. We show that the lepton asymmetry may be reduced by 50% due to the spin flavor precession. In addition, the leptogenesis will have different feature from the standard scenario of leptogenesis, where the lepton asymmetry continues to oscillate even after the electroweak phase transition.
View original:
http://arxiv.org/abs/1205.1250
No comments:
Post a Comment