Tuesday, March 20, 2012

1203.3825 (Werner Rodejohann et al.)

Impact of massive neutrinos on the Higgs self-coupling and electroweak
vacuum stability
   [PDF]

Werner Rodejohann, He Zhang
The presence of right-handed neutrinos in the type I seesaw mechanism may lead to significant corrections to the RG evolution of the Higgs self-coupling. Compared to the Standard Model case, the Higgs mass window can become narrower, and the cutoff scale become lower. Naively, these effects decrease with decreasing right-handed neutrino mass. However, we point out that the unknown Dirac Yukawa matrix may impact the vacuum stability constraints even in the low scale seesaw case not far away from the electroweak scale, hence much below the canonical seesaw scale of 10^15 GeV. This includes situations in which production of right-handed neutrinos at colliders is possible. We illustrate this within a particular parametrization of the Dirac Yukawas and with explicit low scale seesaw models. We also note the effect of massive neutrinos on the top quark Yukawa coupling, whose high energy value can be increased with respect to the Standard Model case.
View original: http://arxiv.org/abs/1203.3825

No comments:

Post a Comment